登录后可回复主题
您需要 登录 才可以下载或查看,没有帐号?注册账号
x
【 NO.1 按奇偶性交换后的最大数字】3 M, J; u3 |. {: P
' {/ a9 F0 g7 A, n8 y% Z7 z解题思路; J3 O" ] ]) n6 Q
分别提取奇数和偶数,排序后按照奇偶性顺序还原即可。" v. x* O" b& C& w1 c7 z
2 L$ b! N% U( K* k8 Z# A
代码展示$ \8 |7 H' _% Z: X9 M- y. z8 u1 {# |
5 U. e J& |) u$ @1 \9 {. F5 I3 F
class Solution {+ C4 T* i" \* D6 v! M/ J
public int largestInteger(int num) {* E# d1 r% T& D% O' [
List<Integer> type = new ArrayList<>();
) t4 g# b- R7 N" ]1 h" Z List<Integer> odd = new ArrayList<>();2 a7 P8 N3 j" l; F$ Q$ o
List<Integer> even = new ArrayList<>();
J6 z) P4 U, H1 \ for (int n = num; n > 0; n /= 10) {
& z% U3 u, o( c$ F' I' Y int d = n % 10;1 {+ Y& Z8 b" t7 {! {: c
if (d % 2 == 0) {
* ]' W7 f$ [8 O2 \ type.add(0);
, K+ q, u$ |! Q8 R5 D, D3 T even.add(d);
* \3 y* U3 U/ m" P7 M% A } else {2 u O; X- Q% t4 t$ y! T7 X
type.add(1);
) \4 _# J! p+ B: U0 t odd.add(d);6 A+ `8 \8 M* i7 y* n( Y1 {& M
}* o! i/ f0 X6 U$ K3 c
}
0 z, e1 Z$ x) f9 R odd.sort(Collections.reverseOrder());
# H1 }4 [2 B4 m" ? even.sort(Collections.reverseOrder());* @1 T2 E3 T- L, [. n
int res = 0;9 G7 e" X+ Z2 i+ z
for (int i = type.size() - 1; i >= 0; i--) {
" Y0 C1 s, ]) Y" [2 f, B, |( l# R List<Integer> list = type.get(i) == 0 ? even : odd;7 B* V/ d& ^& e' ` g
res = res * 10 + list.get(0);
3 j$ X& d7 ~" b/ y( T list.remove(0);6 j* s# Q% t' \. ^7 M
}$ q( Z8 k3 S- S9 t. `
return res;
, T7 h% G0 F( i6 o8 l: B; Y# b }2 p, g+ T' x) S: d' F( i% X
}/ b+ h) w; l6 J& W
" W! F) }8 [2 Z8 ~$ P
) d) A6 e: K* H, T: ]+ J& r4 u1 a【 NO.2 向表达式添加括号后的最小结果】
0 ?0 c) U1 `5 d0 B- Z& U- n4 e1 L
7 D4 m1 D4 d6 ]解题思路3 X& b$ I/ H& `" F
枚举左右括号插入位置即可。2 p, d/ o) ]6 _4 D$ {+ I7 G1 t4 T
7 X6 V$ }8 x5 I' j代码展示
# H5 m7 B- w1 [, f
' c4 W; |( T; [% H+ e2 eclass Solution {7 |* ^# x% M" H" c7 s- f7 ?. K
public String minimizeResult(String expression) {
& x. E* X; m: E0 D* y5 v var elems = expression.split("\\+");; E; {8 ]: e6 j: o; b) y
long min = Long.MAX_VALUE;
1 H: q* L9 A+ P8 q0 `, x String res = "";
, a$ m. s# i1 U0 M# I; U for (int i = 1; i <= elems[0].length(); i++) {
' T% b: w0 U8 @! p/ _( Q: V for (int j = 1; j <= elems[1].length(); j++) {) D+ U9 ]% D! E7 m+ `! H6 U
long left = i == elems[0].length() ? 1 : Long.parseLong(elems[0].substring(0, elems[0].length() - i));4 Q: S. X5 a% t0 n
long add1 = Long.parseLong(elems[0].substring(elems[0].length() - i));3 Y9 Y0 `; ?, Y+ |
long add2 = Long.parseLong(elems[1].substring(0, j));( ^& H! a o- K4 E6 S
long right = j == elems[1].length() ? 1 : Long.parseLong(elems[1].substring(j));/ V2 W$ a+ I9 R/ L' y. w
long sum = left * right * (add1 + add2);- c0 S( N7 {7 [$ S! ^8 f
if (sum >= min) {
$ N P1 h7 ~/ n2 `* w6 u6 T' S3 @ continue;- }3 @% f9 w% U9 _2 C. k
}5 J f9 ~) H7 o0 H! k' U5 I' T3 i
min = sum;* `5 W" _$ a# p+ D- v( \
res = i == elems[0].length() ? "" : elems[0].substring(0, elems[0].length() - i);* i. u u. d' Y* U& s, o! c
res += "(";
1 N+ j6 M5 H6 \4 ?9 N. h9 c res += elems[0].substring(elems[0].length() - i);% N4 `- S- _0 y
res += "+";
2 G! D% G7 a7 y" m" o8 r/ z4 [ res += elems[1].substring(0, j);
: `6 X9 K! X+ D res += ")";
; @* w& G- y8 {% k7 K7 D: K res += j == elems[1].length() ? "" : elems[1].substring(j);
2 b$ z% r N6 H* J; Z: \5 Q" ~ }
& x( e6 @2 i: Y+ T; k6 Y# p }
# m1 Z! P! i0 S) t" V+ ]9 @ return res;
Y; _6 c/ J9 L9 W' v4 m3 U/ p }* d& N1 ?0 y# ]1 G: d
}
! q" @0 u# w. o+ q+ [5 n( h7 d8 T1 a: W/ q6 t9 o" a. _7 D
' h- T7 f- c( |! ~1 G7 x【 NO.3 K 次增加后的最大乘积】( ^4 v0 J& E# |+ @1 h C& T& w
* U$ M1 ?$ Z* u4 l; j/ s7 {! S
解题思路$ G' w1 [* r$ f+ F" S
每次将最小的数字加 1 即可。* y6 @+ E9 S5 I; \+ s
) O& `) t) y% c- S# T* w2 f
代码展示
' p. \! v8 J/ M4 o( C
0 R- M9 h3 [4 o1 K2 j) Dclass Solution {6 }* B5 q" j- s6 p4 f
public int maximumProduct(int[] nums, int k) {
& [1 _8 a ~" M$ E- A n# }# c2 n PriorityQueue<Integer> heap = new PriorityQueue<>();4 }6 A" q0 H$ f* D X+ z
for (int num : nums) {6 ]$ \) `" I, f$ P
heap.add(num);
" [$ C2 _; k L }
$ X2 X% P3 s* g; P" O" W# F! |6 s for (int i = 0; i < k; i++) {. P' m `4 ^6 Y9 r9 h
heap.add(heap.poll() + 1);- b! H2 @% q+ H6 d2 [. m' T
}
& x6 q& r6 l! X" t2 U long res = 1;
. ]1 q" r! G( T" V) t while (!heap.isEmpty()) {
Y7 n0 d+ J: g, J0 V3 ] res = (res * heap.poll()) % 1000000007;
4 V/ ~+ c# ?7 ^6 T7 G4 x }
3 w5 J) o/ P) _+ g. U- C! J! { return (int) res;* Q0 N& P6 z7 ~
} w( q1 n, @1 K. C$ x3 d# R* _
}, y: U" R. M. z5 W% `) z
. K) W8 v5 }# I8 V
# Z0 U5 O; ?' U& K. D
【 NO.4 花园的最大总美丽值】
% U/ T! Y( o4 w. g2 ?+ I' y- l# W* K3 R' O& H9 n& O3 L }1 I) z
解题思路: |# p5 X ?) F" ~- r2 ^
两根指针。! K! C1 |1 G& R& j8 ]2 W/ c
' V: k g- x3 v3 p% f; Y3 ]将花园排序,最优结果一定是令 [0, l] 的花园中花的数目都达到 x (x < target), 并且令 [r, n) 的花园中花的数目都达到 target
5 L) U [- S5 S& j& f* m1 W0 X) k1 s' F6 Z! l$ O
此时的美丽值即 x * partial + (n - r) * full
) W( x% A; F; W0 `' y, t/ J# Q' ~+ K9 O+ \* x: { V1 J, W3 t3 z
枚举 r 即可,l 随着 r 单调递增。* p% s: P3 j, ^( Z6 X) N
3 f9 G% t& W% U8 M5 l$ m' |
代码展示
$ P7 n- I( l7 P1 r; p
! N/ Y* p9 M+ W3 W5 b4 hclass Solution {8 z: ^, Y, p. V, I7 N+ Q; z
public long maximumBeauty(int[] flowers, long newFlowers, int target, int full, int partial) {8 b% Y4 d4 S5 @, t5 n
Arrays.sort(flowers);3 G9 v( k; z' _) `
long[] presum = new long[flowers.length];
6 \$ P; \$ m/ ~ o o* @ presum[0] = flowers[0];- u. K: K+ z7 e/ V1 X: }" L
for (int i = 1; i < presum.length; i++) {
@" I, m- _; H, {1 W presum[i] = presum[i - 1] + flowers[i];# L" P8 U2 S5 P) B. \
}- B; S8 P6 z r$ q% E" h/ Q1 i
9 y4 Z% i, S* G0 u
long[] toTarget = new long[flowers.length + 1]; // toTarget[i] 表示将 [i, n) 的花园变成完善的需要多少朵花
7 m5 \- B1 x9 p _: b2 z for (int i = flowers.length - 1; i >= 0; i--) {
4 x$ r" q9 z9 o& f. u, f8 I( x toTarget[i] = Math.max(0, target - flowers[i]);# W# ~ a2 H& F1 O! p# R' W5 h) c: x
}
- o+ E; v0 `! X n* H4 v, s% E for (int i = flowers.length - 2; i >= 0; i--) {3 L8 ]) i7 \ G5 [1 x2 B
toTarget[i] += toTarget[i + 1];6 c( [- f, @9 H! ^3 j6 U
}
5 z F* F6 D$ b- x- O \7 L0 L# v! t. V8 e. _6 {
long res = 0;
/ o7 x! |, a$ K3 g" o& g for (int f = 0, p = -1; f <= flowers.length; f++) {' n+ U% Q/ N4 d
if (f < flowers.length && newFlowers < toTarget[f]) {3 N& A3 J4 U+ Y8 |. V% n3 L" ~
continue;5 Z( h0 g6 S2 }( W1 ]
}1 p8 g9 N8 k1 T) h1 N' v
long left = newFlowers - toTarget[f];
$ h8 f: M5 w' d7 a while (p + 1 < f && flowers[p + 1] < target && (long) flowers[p + 1] * (p + 2) - presum[p + 1] <= left) {
2 @ J% B% S' E; O' V4 \% _ p++;; M, f# A8 Q" e( m" j* Q% C
}
0 f9 c3 R: _/ C! l' m3 V1 ~6 t5 \- X if (p == -1) {" y7 X, h* b) D' Q
res = Math.max(res, (long) (flowers.length - f) * full);( ~3 R3 p) h, M8 v2 a2 C7 k
continue;
" L( Y7 |1 N, _: ^ }: C! x: P0 F! [1 k
left -= (long) flowers[p] * (p + 1) - presum[p];
/ i* y6 x* N1 w; C' Z long min = Math.min(target - 1, flowers[p] + left / (p + 1)); F6 u ^2 A! K7 E4 J; a
res = Math.max(res, (long) (flowers.length - f) * full + partial * min);
; K: ~% [" q3 B }
( g: d+ }/ H+ y4 X% w) Q return res;; R- [4 p# i8 a) W
} z( a- Y& K- F+ |
} |