登录后可回复主题
您需要 登录 才可以下载或查看,没有帐号?注册账号
x
【 NO.1 按奇偶性交换后的最大数字】
0 |5 \8 `% ^0 O" |% J! r8 J2 r' Z8 \" G. e2 A# Z& q
解题思路
' J: b" V# ?" P1 _6 O& ~分别提取奇数和偶数,排序后按照奇偶性顺序还原即可。3 }7 y6 S t$ A% Q4 N
$ Y, Y" q- v- e% n
代码展示
# g& E5 P, Z }- v' }* j
! n! @. g5 y" v: o; dclass Solution {
& k, G6 J) N w$ ?# B! Y0 Q public int largestInteger(int num) {- p( F9 m1 _% [" x
List<Integer> type = new ArrayList<>();
9 Q/ x" _: h3 R3 }% ] List<Integer> odd = new ArrayList<>();- B( b$ n4 }% s2 C6 Q3 S
List<Integer> even = new ArrayList<>();* W/ d+ _6 @. m0 e" J
for (int n = num; n > 0; n /= 10) {- I3 V# E7 l1 j* e' D8 b
int d = n % 10;! U f& p+ q$ }; c- v+ t$ L$ W8 S- c
if (d % 2 == 0) {2 T+ T9 }: M+ |
type.add(0);1 E) f, @1 [# \4 Z; q7 i
even.add(d);
6 Q1 R' v: B, g$ y& }. Y" h0 Y } else {
% z! v. s% R- h6 N# a type.add(1);& p1 r1 D% {* m& q& x
odd.add(d);
( o- C! y& x/ T8 t! U ^/ S }
. w5 B) f5 C5 A! J$ \. {" B }
; ^7 x% s4 M2 }. g! g! ` odd.sort(Collections.reverseOrder());3 Y! U; S/ {5 v% c4 h; B
even.sort(Collections.reverseOrder());
& K. J8 k3 ^0 j* A% }8 |4 O& `: k int res = 0;" V" k" }- x n) X! b2 z+ T1 ?
for (int i = type.size() - 1; i >= 0; i--) {
3 w: G( L4 C& O$ ~+ M9 T2 _1 P List<Integer> list = type.get(i) == 0 ? even : odd;
3 W7 J2 f6 d9 k0 _! {9 h9 G0 H; n" h res = res * 10 + list.get(0);; p6 Y0 f& L: }7 z+ z3 L# O
list.remove(0);# n) Q* R$ |6 K) e0 _4 V
}
+ [, S* e9 G8 C! S$ B7 X v return res;* V, S' u7 f6 U! A+ Y
}6 a' c' ? l$ Q! z5 \ P5 g
}, }3 ^' d; }6 }( W! Z
' {5 x3 v* u! j5 y3 ]
' ?- b3 K' w' q4 s$ q, M【 NO.2 向表达式添加括号后的最小结果】& [8 ], g1 h4 v h7 \, N
! w D% ]& \6 a0 Z2 Q解题思路/ d( D7 f/ W' n. h) y6 \1 `
枚举左右括号插入位置即可。* s- X7 J J' ~8 z
7 {. B* g. H8 D+ _. b' p: E5 p
代码展示7 G4 K2 t. L% y
, m4 e" ] {% F E2 |$ M7 r
class Solution {; R8 {8 Y6 b! e! b- z, q# V
public String minimizeResult(String expression) {
4 C% E& T9 U# x3 D( f. b var elems = expression.split("\\+");
, H2 b! x7 o. g/ A+ M( ]) B long min = Long.MAX_VALUE;8 e9 v; W; q; i% x ]# m
String res = "";- a8 X# u I- |1 s3 z
for (int i = 1; i <= elems[0].length(); i++) {
4 X( Q3 v% u. b1 C8 W' n for (int j = 1; j <= elems[1].length(); j++) {
! P" J' q* d3 i" D- f long left = i == elems[0].length() ? 1 : Long.parseLong(elems[0].substring(0, elems[0].length() - i));
9 Q; m- ^1 T' p long add1 = Long.parseLong(elems[0].substring(elems[0].length() - i));
4 k/ C8 R9 U0 }/ J) j, o long add2 = Long.parseLong(elems[1].substring(0, j));1 P5 A! ?: G: c6 n) x
long right = j == elems[1].length() ? 1 : Long.parseLong(elems[1].substring(j));
3 ] {$ T* O) H5 V long sum = left * right * (add1 + add2);
9 ]' v4 P* F3 c5 {0 M( S+ P) [ if (sum >= min) {
7 T! w! ?; Q; C( @- Z D% V continue;
: ^) q7 d# X1 t4 c }
/ L5 j B% S+ p" S. N9 P# }9 O min = sum;
% j! ?8 ?4 c) }. o res = i == elems[0].length() ? "" : elems[0].substring(0, elems[0].length() - i); w3 a7 p/ V4 U3 t0 z( \
res += "(";0 b' y3 S7 H; s: O' q: Q. B# ^
res += elems[0].substring(elems[0].length() - i);
{' ?, L" n+ p5 H7 _8 a" ?; D res += "+";- v1 ^8 F- l4 D% Q4 m
res += elems[1].substring(0, j);, ~7 U4 L( i7 R
res += ")";5 s/ y4 ?- T) ?0 j; `; V
res += j == elems[1].length() ? "" : elems[1].substring(j);* M% R3 E, ]/ @1 J
}, U# ]' Z) o0 A/ {- S( [
}! T( ]( n c! Y: f6 T2 K
return res;
! m2 W1 y9 m4 \- q6 k* T4 D/ h3 k }" [# T6 n" n- C8 k- |! N) W
}
0 ]# H2 a0 p( `
7 F5 z n! M; Z: i9 U4 s% N3 t1 f+ P t
【 NO.3 K 次增加后的最大乘积】
/ v% u9 S. ]. j4 _" \# _5 k- v( k/ I u4 _- F" J5 K7 i" Z
解题思路5 f; o/ J. L+ [; y: u1 [! d( n
每次将最小的数字加 1 即可。2 d2 n2 l% m; B8 m; D* _# E
- \' }! c0 x6 E! [
代码展示
5 W" s: ?- {4 `* ^ q) U( P0 L8 z. s$ w2 H. h8 w& n8 h
class Solution {
' ?) v& w& U+ E2 Q public int maximumProduct(int[] nums, int k) {
: N6 ^) ]1 R: W2 p6 V$ U PriorityQueue<Integer> heap = new PriorityQueue<>();- X8 |4 Y8 Q3 K( n( Q# |: x. j
for (int num : nums) {! e u! N4 r0 ]
heap.add(num);
( x) P. {: W9 x+ y4 R6 } }1 { m% X6 v* O* r
for (int i = 0; i < k; i++) {
3 E) h* g. \$ H heap.add(heap.poll() + 1);* l$ x) m5 Y3 Z: m
}
j: D4 {- N& p* {7 R2 l) ^; K+ {, e' T long res = 1;" B) g( o1 O$ v
while (!heap.isEmpty()) {1 A9 F+ A# w( [, V3 ^
res = (res * heap.poll()) % 1000000007;
0 z& ^3 l: j& P: g- J; X* x2 V7 U }
$ f5 L) w/ F6 F return (int) res;
0 w# y1 W" W" q }( {6 z, m" P( C' u! u* }% _
}( r' W2 c, u! \) w }
9 v- `" \" N; w9 N- b
0 C( \8 ^1 l3 ?( G- l【 NO.4 花园的最大总美丽值】
q3 j8 @4 Y. z0 W1 T w% h/ S i/ t7 Q$ W$ G( o9 j g
解题思路1 x0 X: r: w1 X# n) ~+ V
两根指针。" I& ? I! x" Y. ~7 Q
. u. h0 E; |; p0 P; u l+ \将花园排序,最优结果一定是令 [0, l] 的花园中花的数目都达到 x (x < target), 并且令 [r, n) 的花园中花的数目都达到 target
0 B" D5 G2 s- M$ B' A- e: Y$ u6 O! r2 Y8 `" X/ z
此时的美丽值即 x * partial + (n - r) * full( \: M( B% N5 B3 P/ P. k' F/ U
7 Z0 ?. x1 R6 ?( \) c枚举 r 即可,l 随着 r 单调递增。
) G% g- f0 b5 c
" a+ A: I* ]( y- W代码展示
) ?8 z1 r4 x4 {7 Q7 o7 }
. A: b% ^/ Z" r- J/ M4 T5 }) Bclass Solution {
y/ E* \& n- P& j2 f/ s* P public long maximumBeauty(int[] flowers, long newFlowers, int target, int full, int partial) {
1 i4 h: X9 d5 r8 Y8 y Arrays.sort(flowers);7 z1 _# u# B% W( L3 \. a# ^: ^
long[] presum = new long[flowers.length];
* @ p- d5 J2 e* L# s4 T presum[0] = flowers[0];- Z3 `' c% E2 ?: N/ l) P
for (int i = 1; i < presum.length; i++) {
0 R* n- S! |$ N5 a presum[i] = presum[i - 1] + flowers[i];
, J9 l" z8 E' X0 ] }
9 I) t% L( M5 e9 p: a+ ^" f: r1 H5 e
long[] toTarget = new long[flowers.length + 1]; // toTarget[i] 表示将 [i, n) 的花园变成完善的需要多少朵花- a3 S# O6 m! B/ E0 w/ `' G( S _- X
for (int i = flowers.length - 1; i >= 0; i--) {' X z8 z8 |: Q4 ]. B
toTarget[i] = Math.max(0, target - flowers[i]);% i7 L. R) q6 I- p9 u- N9 w
}
0 C$ Q, l$ h$ e for (int i = flowers.length - 2; i >= 0; i--) {
+ o" _* [" q+ v$ } toTarget[i] += toTarget[i + 1];: [( v; c3 y% y
}) [$ a1 S# s j4 S
% D6 m# I! a0 v+ Q* b long res = 0;/ C2 I3 T5 l3 d& p* G* n
for (int f = 0, p = -1; f <= flowers.length; f++) {0 R: ^, K% Y# F4 V1 `$ V
if (f < flowers.length && newFlowers < toTarget[f]) {' _" H; ]! L2 `( ]
continue;6 t7 X1 u2 I& T( K; L9 {
}0 Y }! @- T; V) ~; P
long left = newFlowers - toTarget[f];
; @: V6 H6 `3 o0 B' A4 S8 K while (p + 1 < f && flowers[p + 1] < target && (long) flowers[p + 1] * (p + 2) - presum[p + 1] <= left) {3 Q( g; |6 W( I6 a
p++;
! m8 K% o6 `' p+ W$ s4 Z7 K; N$ c } C& c; w+ N: Y
if (p == -1) {& Z) v# s, g. T& Q5 j
res = Math.max(res, (long) (flowers.length - f) * full);+ Y. \5 {4 o! I( Z
continue;
3 }4 o( V4 Y" F, ?( ] }
' w0 V; {: o% F0 I3 f( p- s5 D left -= (long) flowers[p] * (p + 1) - presum[p];
5 `- R% x( q; J3 \9 c0 k8 x long min = Math.min(target - 1, flowers[p] + left / (p + 1));7 o! E7 S9 o% o& ^ {! h
res = Math.max(res, (long) (flowers.length - f) * full + partial * min);
6 X1 y3 |: C0 I2 \, u* t }# E) j6 m7 ]* v4 x% ?
return res;
5 Y% X( p v, G" ~2 [7 W0 j+ @9 n; Y }, k3 Q2 F! O, X1 l
} |